An N100-P300 Spelling Brain-Computer Interface with Detection of Intentional Control
نویسندگان
چکیده
A brain-computer interface (BCI) is a tool to communicate with a computer via brain signals without the user making any physical movements, thus enabling disabled people to communicate with their environment and with others. P300-based ERP spellers are a widely used spelling visual BCI using the P300 component of event-related potential (ERP). However, they have a technical problem in that at least √ 2N flashes are required to present N characters. This prevents the improvement of accuracy and restricts the typing speed. To address this issue, we propose a method that uses N100 in addition to P300. We utilize novel stimulus images to detect the user’s gazing position by using N100. By using both P300 and N100, the proposed visual BCI reduces the number of flashes and improves the accuracy of the P300 speller. We also propose using N100 to classify non-control (NC) and intentional control (IC) states. In our experiments, the detection accuracy of N100 was significantly higher than that of P300 and the proposed method exhibited a higher information transfer rate (ITR) than the P300 speller.
منابع مشابه
Control of a 2-DoF robotic arm using a P300-based brain-computer interface
In this study, a novel control algorithm, based on a P300-based brain-computer interface (BCI) is fully developed to control a 2-DoF robotic arm. Eight subjects including 5 men and 3 women perform a 2-dimensional target tracking in a simulated environment. Their EEG (Electroencephalography) signals from visual cortex are recorded and P300 components are extracted and evaluated to perform a real...
متن کاملEvaluation of the Hidden Markov Model for Detection of P300 in EEG Signals
Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool between humans and machines. Most brain-computer interface (BCI) systems use the P300 component, which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for detection of P300. Materials and Methods: The wavelet transforms, wavelet-enhanced indepen...
متن کاملOn P300 Detection using Scalar Products
Results concerning detection of the P300 wave in EEG segments using scalar products with signals of various shapes are presented and their advantages and limitations are discussed. From the point of view of the computational complexity, the proposed algorithm is a simple algorithm, based on a scalar product and searching for the max value of 6 calculated values. Because we considered that the h...
متن کاملDevelopment of a Brain Computer Interface (BCI) Speller System Based on SSVEP Signals
BCI is one of the most intriguing technologies among other HCI systems, mostly because of its capability of recording brain activities. Spelling BCIs, which help paralyzed people to maintain communication, are one of the striking topics in the field of BCI. In this scientific a spelling BCI system with high transfer rate and accuracy that uses SSVEP signals is proposed.In addition, we suggested...
متن کاملAdaptive Error Detection Method for P300-based Spelling Using Riemannian Geometry
Brain-Computer Interface (BCI) systems have become one of the valuable research area of ML (Machine Learning) and AI based techniques have brought significant change in traditional diagnostic systems of medical diagnosis. Specially; Electroencephalogram (EEG), which is measured electrical activity of the brain and ionic current in neurons is result of these activities. A brain-computer interfac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers
دوره 5 شماره
صفحات -
تاریخ انتشار 2016